- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Aoki, Nadège (2)
-
Formel, Nathan (2)
-
Jarriel, Sierra (2)
-
Jézéquel, Youenn (2)
-
Mooney, T Aran (2)
-
Weiss, Benjamin S (2)
-
Apprill, Amy (1)
-
Bonnel, Julien (1)
-
Zhang, Weifeng Gordon (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Amidst rapidly changing ocean soundscapes, research is still unraveling how marine animals use sound to communicate, detect predators, seek prey, and find suitable habitat. These vital behaviors may also be impacted by anthropogenic noise. Here, we describe a new tool, a Reef Acoustic Playback System, or RAPS, designed to be a cost-effective, extended-duration device that allows researchers to remotely and replay sound cues, manipulate soundscapes, and introduce “noise” into field-based experiments to address key questions regarding sound use or noise impacts within ocean ecology and conservation. The RAPS, outlined herein, has been deployed in the field for days to weeks, powered by renewable solar energy. The tool has been proven to be flexible in applications and robust to a range of ocean conditions. We outline the tool and describe several use cases, including use of the RAPS to replay healthy soundscapes to enhance the settlement of coral larvae, a fundamental ecological process sustaining coral reefs. Fundamentally, the RAPS is a new, potentially scalable means of supporting both healthy and imperiled reefs undergoing restoration, enhancing settlement of reef larvae, and broadening our ability to conduct a range of acoustic behavior studies.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Jézéquel, Youenn; Jarriel, Sierra; Bonnel, Julien; Formel, Nathan; Weiss, Benjamin S; Aoki, Nadège; Mooney, T Aran (, The Journal of the Acoustical Society of America)Acoustic enrichment can facilitate coral and fish larval settlement, offering a promising method to rebuild degraded reefs. Yet it is critical to understand sound propagation in complex shallow-water coral reefs to effectively apply this method over large restoration-scale areas. In this field-based study, we quantified propagation features of multiple sound types emitted through a custom playback system over varying coral reef habitat. Sound levels were computed at different distances from the source in both pressure and particle motion, the latter being detected by marine invertebrates. Detection distances were primarily determined by source levels, and depth-dependent transmission losses. Transmission losses and detection distances were similar for sound pressure and particle acceleration measurements. Importantly, broadband particle acceleration levels could be closely estimated at distances >10 m using a single hydrophone and a plane wave approximation. Using empirically determined coral larvae sound detection thresholds, we found that low frequency sounds (<1 kHz) such as fish calls from healthy coral reef soundscapes may be detectable by larvae hundreds of meters away. These results provide key data to help design standardized methods and protocols for scientists, managers and restoration practitioners aiming to rebuild coral reef ecosystems over reasonably large spatial scales using acoustic enrichment.more » « lessFree, publicly-accessible full text available November 1, 2026
An official website of the United States government
